Again, ongoing work helped speed development of coronavirus vaccines, McLellan said. In this case, work on the original 2003-2004 severe acute respiratory syndrome, or SARS, virus and Middle East respiratory, or MERS, virus helped researchers understand which version of the knoblike structure found on the outside of the virus, called the spike protein, to use in making vaccines. “We figured out how to stabilize coronavirus spikes back in 2016, so we had all the knowledge ready when Covid-19 emerged,” McLellan said.
It was ready to go “within hours,” he said.
Other potential vaccines include malaria, tuberculosis and rare viruses such as Nipah virus, Weissman said — all made more possible by the mRNA technology. Effective vaccines against these infections have eluded scientists for various reasons.
Weissman’s lab is now working on a universal coronavirus vaccine that would protect against Covid-19, SARS, MERS, coronavirus that cause the common cold — and future strains.
“We started working on a pan-coronavirus vaccine last spring,” Weissman said. “There have been three coronavirus epidemics in the past 20 years. There are going to be more.”
And the mRNA vaccines work very well. “We knew in mice and monkeys and rabbits and pigs and chickens that it was very potent,” Weissman said. The Pfizer vaccine, he said, produces an antibody response that is five time bigger than what’s seen in people who have recovered from infection.
Cancer
Another obvious use for mRNA technology is to fight cancer. The human body fights off cancer every day, and using mRNA could help it do so even better.
“You can use it to have your body produce a beneficial molecule,” McLellan said.
Different tumor cell types have various, recognizable structures on the outside that the immune system can recognize. “You can imagine being able to inject someone with an mRNA that encodes an antibody that specifically targets that receptor,” McLellan said.
Moderna — a company formed specially to develop mRNA technology — is working on personalized cancer vaccines.
“We identify mutations found on a patient’s cancer cells,” the company says on its website. Computer algorithms predict the 20 most common mutations. “We then create a vaccine that encodes for each of these mutations and load them onto a single mRNA molecule,” Moderna says. That’s injected into the patient to try to help orchestrate a better immune response against the tumors.
This is early, Phase 1 clinical research.
BioNTech founders Ugur Sahin and Ozlem Tureci also had cancer vaccines in mind from the beginning. The company has eight potential cancer treatments in human trials. “While we believe our approach is broadly applicable across a number of therapeutic areas, our most advanced programs are focused on oncology, where we have treated over 250 patients across 17 tumor types to date,” the company says on its website.
Autoimmune diseases
Using mRNA to fight autoimmune diseases is an “exciting area,” McLellan said.
Current treatments are crude and involve tamping down specific areas of the mistaken immune response — something that can leave patients with autoimmune disease such as lupus or rheumatoid arthritis vulnerable to infection.
BioNtech has been working with academic researchers to use mRNA to treat mice genetically engineered to develop a disease similar to multiple sclerosis — an autoimmune disease that starts when the immune system mistakenly attacks the myelin, a fatty covering of the nerve cells.
In the mice, the treatment appeared to help stop the attack, while keeping the rest of the immune system intact.
Gene therapy
The idea behind gene therapy is to replace a defective gene with one that works properly. Despite decades of work, researchers haven’t had much success, with the exception of certain immune deficiencies and some eye diseases.
It’s difficult to find a vector to carry the corrected gene into cells without causing side-effects, and in a way that lasts.
The mRNA approach promises to send instructions for making the healthy version of a protein, and Weissman sees special promise in treating sickle cell disease, in particular.
In sickle cell disease, red blood cells take on a folded shape and can clog tiny blood vessels, causing pain and organ damage. Messenger RNA could be used to change the instructions going to the bone marrow, where red blood cells are made, telling them to make healthier shaped cells.
Leave a Reply